Hate Speech Detection: A Solved Problem? The Challenging Case of Long Tail on Twitter

نویسندگان

  • Ziqi Zhang
  • Lei Luo
چکیده

In recent years, the increasing propagation of hate speech on social media and the urgent need for effective countermeasures have drawn significant investment from governments, companies, and empirical research. Despite a large number of emerging, scientific studies to address the problem, the performance of existing automated methods at identifying specific types of hate speech as opposed to identifying non-hate is still very unsatisfactory, and the reasons behind are poorly understood. This work undertakes the first in-depth analysis towards this problem and shows that, the very challenging nature of identifying hate speech on the social media is largely due to the extremely unbalanced presence of real hateful content in the typical datasets, and the lack of unique, discriminative features in such content, both causing them to reside in the ‘long tail’ of a dataset that is difficult to discover. To address this issue, we propose novel Deep Neural Network structures serving as effective feature extractors, and explore the usage of background information in the form of different word embeddings pre-trained from unlabelled corpora. We empirically evaluate our methods on the largest collection of hate speech datasets based on Twitter, and show that our methods can significantly outperform state of the art, as they are able to obtain a maximum improvement of between 4 and 16 percentage points (macro-average F1) depending on datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing and Detecting Hateful Users on Twitter

Most current approaches to characterize and detect hate speech focus on content posted in Online Social Networks. They face shortcomings to collect and annotate hateful speech due to the incompleteness and noisiness of OSN text and the subjectivity of hate speech. These limitations are often aided with constraints that oversimplify the problem, such as considering only tweets containing hate-re...

متن کامل

Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter

Hate speech in the form of racist and sexist remarks are a common occurrence on social media. For that reason, many social media services address the problem of identifying hate speech, but the definition of hate speech varies markedly and is largely a manual effort (BBC, 2015; Lomas, 2015). We provide a list of criteria founded in critical race theory, and use them to annotate a publicly avail...

متن کامل

Deep Learning for Hate Speech Detection in Tweets

Hate speech detection on Twitter is critical for applications like controversial event extraction, building AI chatterbots, content recommendation, and sentiment analysis. We define this task as being able to classify a tweet as racist, sexist or neither. The complexity of the natural language constructs makes this task very challenging. We perform extensive experiments with multiple deep learn...

متن کامل

Automatic Detection of Online Jihadist Hate Speech

We have developed a system that automatically detects online jihadist hate speech with over 80% accuracy, by using techniques from Natural Language Processing and Machine Learning. The system is trained on a corpus of 45,000 subversive Twitter messages collected from October 2014 to December 2016. We present a qualitative and quantitative analysis of the jihadist rhetoric in the corpus, examine...

متن کامل

Locate the Hate: Detecting Tweets against Blacks

Although the social medium Twitter grants users freedom of speech, its instantaneous nature and retweeting features also amplify hate speech. Because Twitter has a sizeable black constituency, racist tweets against blacks are especially detrimental in the Twitter community, though this effect may not be obvious against a backdrop of half a billion tweets a day. We apply a supervised machine lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018